2zh] これをx軸とy軸に関して対称となるように折り返して, \ 領域\maru2が得られる. 2zh] さらに, \ \maru2を平行移動すると, \ 領域\maru1(黄色の部分)が得られる. 2zh] これを折り返すと, \ 求める領域となる. \\[1zh] ちなみに, \ 本問は2013年大阪大学(理系)の大問2である.

  1. 396の(4)を教えて下さい。考え方のコツなどあれば、お願いします。 - Clear
  2. 愛媛大学2020前期 【入試問題&解答解説】過去問 | 5ページ目 (8ページ中)
  3. 数学の質問です。 写真のように、三角関数と領域の問題です。 sin(x+y- 数学 | 教えて!goo

396の(4)を教えて下さい。考え方のコツなどあれば、お願いします。 - Clear

☆問題のみはこちら→ 軌跡と領域の解法パターン(問題) ①点Pだけが動くパターンの軌跡を求めるときの解法の手順は? →ⅰ)Pを(x, y)とおく ⅱ)問題文を読み、x、yを含む方程式を作る ⅲ)ⅱ)を変形して、どのような図形か分かる形にする ②点Pともう1つ別に動く点があるパターンの軌跡を求めるときの解法の手順は? →ⅰ)Pを(x, y)とおき、Q(s, t)とおく ⅱ)問題文を読み、x、y、s、tを含む方程式を作る ⅲ)sとtを消去して、xとyだけの式にする ⅳ)ⅲ)を変形して、どのような図形か分かる形にする ③y>f(x)が表す領域は? →y=f(x)より上側 ④yr²が表す領域は? →円の外部 ⑦境界を図示した後にやらないといけないことは? →≦や≧なら「境界線を含む」、<や>なら「境界線を含まない」を明示する ⑧絶対値を含む不等式の表す領域の問題でやらないといけないことは? →絶対値の中が0以上か負かで場合分け。そして、場合分けの条件の不等式も領域を図示するときに考えないといけない。 ⑨AB>0 ⇔(A>0かつB>0)または(A<0かつB<0) ⑩AB<0 ⇔(A>0かつB<0)または(A<0かつB>0) ⑪線形計画法の解法の手順 →ⅰ)まずは、不等式の表す領域を図示する ⅱ)つぎにax+by=kとおく ⅲ)ⅱをy=の形に式変形する ⅳ)ⅲは直線を表すので、その直線がⅰで図示した領域を通りながら、y切片が最大・最小になるときの、y切片の最大値と最小値を求める ⅴ)ⅳ求めたy切片が最大・最小になるときが、kの最大または最小になるときとなる ⑫線形計画法において領域が円のとき、直線のy切片が最大または最小となるのはどのようなときか? 愛媛大学2020前期 【入試問題&解答解説】過去問 | 5ページ目 (8ページ中). →領域の円と直線が接するとき ⑬線形計画法において、=kとおいた式が円を表す場合、何の最大と最小を考えるか? →半径(の2乗)の最大と最小を考える ⑭xy平面における領域の図示の問題の場合、必要な関係式は何か? →xとyを含んだ関係式(不等式) ⑮「実数である」という条件から関係式(不等式)を作る手順は? →「実数である」文字についてまとめて、おそらく二次方程式となるので判別式をDとしたとき、D≧0 ⑯領域を利用した不等式の証明の手順 →ⅰ)与えられた不等式が表す領域をまず図示します。 ⅱ)次に、示す不等式が表す領域を図示します。 ⅲ)ⅰがⅱ含まれていることを示し、証明終了。

愛媛大学2020前期 【入試問題&解答解説】過去問 | 5ページ目 (8ページ中)

\end{eqnarray} 二次不等式の問題の解答・解説 まず、上の不等式を解きます。 因数分解 をして、\((2x+1)(x-3)<0\) A×B<0\(\Leftrightarrow\)「A<0かつB>0、またはA>0かつB<0」であることを、ここで用いると 「\(2x+1<0\)かつ\(x-3>0\)、または\(2x+1>0\)かつ\(x-3<0\)」 よって、「\(x<-\frac{ 1}{ 2}\)かつ\(x>3\)、または\(x>-\frac{ 1}{ 2}\)かつ\(x<3\)」 ここでは\(x<-\frac{ 1}{ 2}\)かつ\(x>3\)では共通部分が出てこないので \(-\frac{ 1}{ 2}

数学の質問です。 写真のように、三角関数と領域の問題です。 Sin(X+Y- 数学 | 教えて!Goo

授業プリント ~自宅学習や自習プリントとして~ 2021. 06. 27 2021.

愛媛大学 2021/05/03 愛媛大学2020前期 【数学】第5問 以下の問いに答えよ。 \((1)\;\) 座標平面において\(, \;\) 連立不等式 \[x+y\leqq 2\,, \;\; 0\leqq x\leqq y\] の表す領域を図示せよ。 \((2)\;\) 極限 \(\displaystyle\lim_{x\, \to\, -\infty} (\sqrt{9\, x^2+x}+3\, x)\) を求めよ。 \((3)\;\) 座標平面上を運動する点 \({\rm P}\, (\, x\,, \;\;y\, )\) があり\(, \;\) \(x\) 座標および \(y\) 座標が時刻 \(t\) の関数として \[x=\sin 2\, t\,, \;\; y=\sin 3\, t\] で与えられているとする。時刻 \(t=\dfrac{\pi}{12}\) における点 \({\rm P}\) の速度 \(\vec{v}\) および加速度 \(\vec{a}\) を求めよ。 \((4)\;\) 不定積分 \(\int x\cos\, (x^2)\, dx\) を求めよ。 \((5)\;\) さいころを \(4\) 回続けて投げる。出た目の和が \(7\) 以上である確率を求めよ。

次の不等式を解け。 $0≦\theta<2\pi$とする。 $$\sqrt{2}\sin2\theta-2\sin\theta-\sqrt{2}\cos\theta+1>0$$ 方針 どこから手を付けたらいいのでしょうか… これはどんな不等式でも言えることですが、まず目指すべき変形はなんですか? 例えば不等式 $x^2-x<0$ を解け と言われたら、まずはどんな変形をしますか? それはもちろん因数分解ですよ! そうですよね。この問題も例外ではありません。 まずは因数分解を目指して から、無理であれば三角関数の合成なり和積公式なりを試すわけです。 2倍角の公式の利用と因数分解 まず 2倍角の公式 を使って、与式を $2\sqrt{2}\sin\theta\cos\theta-2\sin\theta-\sqrt{2}\cos\theta+1>0$ と変形しました。これを因数分解はできますか? えっと、まず $2\sin\theta$ でくくって… $2\sin\theta(\sqrt{2}\cos\theta-1)-\sqrt{2}\cos\theta+1>0$ 共通因数がありますね! $\sqrt{2}\cos\theta-1$ が共通因数です! $2\sin\theta(\sqrt{2}\cos\theta-1)-(\sqrt{2}\cos\theta-1)>0$ $(2\sin\theta-1)(\sqrt{2}\cos\theta-1)>0$ OKです。「1文字について整理する」因数分解をしたんですね。(この場合 $\sin\theta$ に注目) 慣れている人なら、因数分解の形を大まかに予想して、係数を順に埋め充ててもOKです。整数の単元で不定方程式を解くときに似たような変形をしたことを思い出すといいでしょう。 不等式の表す領域を考える 因数分解はできましたね。しかし、この後はどうしたらいいんでしょうか? 「 不等式の表す領域 」のことは覚えていますか? 今解いている問題はいったん置いておいて、例えばですが… $(x-1)(2y-1)>0$ の表す領域はどのようになりますか? かけて正だから、「正×正」か「負×負」なので、 $\begin{cases}x-1>0\\2y-1>0\end{cases}$ または $\begin{cases}x-1<0\\2y-1<0\end{cases}$ $\begin{cases}x>1\\y>\dfrac{1}{2}\end{cases}$ $\begin{cases}x<1\\y<\dfrac{1}{2}\end{cases}$ ということで、こんな領域です!

Sitemap | xingcai138.com, 2024

[email protected]