一緒に解いてみよう これでわかる! 位置エネルギー(ポテンシャルエネルギー) – Shinshu Univ., Physical Chemistry Lab., Adsorption Group. 練習の解説授業 物体にはたらく力についての問題ですね。 物体にはたらく重力の大きさを求める問題です。重力は鉛直下向きにはたらきましたね。重力の大きさをWとすると、Wはどのようにして求められるでしょうか? 重力は物体の質量m[kg]に重力加速度gをかけると求められました。つまり、W=mg[N]です。m=5. 0[kg]、g=9. 8[m/s 2]を代入し、有効数字が2桁であることにも注意して解いていきましょう。 (1)の答え 物体が床から受ける垂直抗力を求める問題です。物体には、(1)で求めた重力Wの他に 接触力 がはたらいていますね。物体は糸と床に接しているので、糸が引っ張り上げる 張力T と床が物体を押し上げる 垂直抗力N の2つの接触力が存在します。 今、物体は静止しています。静止している、ということは 力がつりあっている ということでした。どんな力がはたらいているか、図にかいてみましょう。接触力は上向きに垂直抗力Nと張力T、下向きには重力Wがはたらいています。 この上向きの力と下向きの力の大きさが同じとき、力がつりあうんでしたね。重力は(1)よりW=49[N]、張力は問題文よりT=14[N]です。したがって、 力のつりあいの式T+N=W に代入すれば答えが出てきますね。 (2)の答え

  1. 【物理基礎】力のつり合いの計算を理解して問題を解こう! | HIMOKURI
  2. 回転に関する物理量 - EMANの力学
  3. 力、トルク、慣性モーメント、仕事、出力の定義~制御工学の基礎あれこれ~
  4. 位置エネルギー(ポテンシャルエネルギー) – Shinshu Univ., Physical Chemistry Lab., Adsorption Group

【物理基礎】力のつり合いの計算を理解して問題を解こう! | Himokuri

この定義式ばかりを眺めて, どういう意味合いで半径の 2 乗が関係しているのだろうかなんて事をいくら悩んでも無駄なのである.

回転に関する物理量 - Emanの力学

以前,運動方程式の立て方の手順を説明しました。 運動方程式の立て方 運動の第2法則は F = ma という式の形で表せます。 この式は一体何に使えるのでしょうか?... その手順の中でもっとも大切なのは,「物体にはたらく力をすべて書く」というところです。 書き忘れがあったり,存在しない力を書いてしまったりすると,正しい運動方程式は得られません。 しかし,そうは言っても,「力を過不足なく書き込む」というのは,初学者には案外難しいものです。。。 今回はそんな人たちに向けて,物体にはたらく力を正しく書くための方法を伝授したいと思います! 例題 この例題を使いながら説明していきたいと思います。 まず解いてみましょう! …と言いたいところですが,自己流で書いてみたらなんとなく当たった,というのが一番上達の妨げになるので,今回はそのまま読み進めてください。 ① まずは重力を書き込む 物体にはたらく力を書く問題で,1つも書けずに頭を抱える人がいます。 私に言わせると,どんなに物理が苦手でも,力を1つも書けないのはおかしいです! だって,その 物体が地球上にある以上, 絶対に重力は受ける んですよ!?!? 身の回りで無重量力状態でプカプカ浮かんでいる物体がありますか? 回転に関する物理量 - EMANの力学. ないですよね? どんな物体でも地球の重力から逃れる術はありません。 だから,力を書く問題では,ゴチャゴチャ考えずに,まずは重力を書き込みましょう。 ② 物体が他の物体と接触していないかチェック 重力を書き込んだら,次は物体の周辺に注目です。 具体的には, 「物体が別のものと接触していないか」 をチェックしてください。 物体は接触している物体から 必ず 力を受けます。 接触しているところからは,最低でも1本,力の矢印が書けるのです!! 具体的には,面に接触 → 垂直抗力,摩擦力(粗い面の場合) 糸に接触 → 張力(たるんだ糸のときは0) ばねに接触 → 弾性力(自然長のときは0) 液体に接触 → 浮力 がそれぞれはたらきます(空気の影響を考えるなら,空気の浮力と空気抵抗が考えられるが,これらは無視することが多い)。 では,これらをすべて書き込んでいきます。 矢印と一緒に,力の大きさ( kx や T など)を書き込むのを忘れずに! ③ 自信をもって「これでおしまい」と言えるように 重力,接触した箇所からの力を書き終えたら,それ以外に物体にはたらく力は存在しません。 だから「これでおしまい」です。 「これでおしまい!」と断言できるまで問題をやり込むことはとても重要。 もうすべて書き終えているのに,「あれ,他にも何か力があるかな?」と探すのは時間の無駄です。 「これでおしまい宣言」ができない人が特にやってしまいがちな間違いがあります。 それは,「本当にこれだけ?」という不安から,存在しない力を付け加えてしまうこと。 実際,(2)の問題は間違える人が多いです。 確認問題 では,仕上げとして,最後に1問やってみましょう。 この図を自分でノートに写して,まずは自力で力を書き込んでみてください!

力、トルク、慣性モーメント、仕事、出力の定義~制御工学の基礎あれこれ~

今回は、『 摩擦力(まさつりょく) 』について学びましょう。 物体と接する面との間に働く『 接触力 (せっしょくりょく)』の1つですね。 『 摩擦力 』と言えば、荷物を押して動かしたいのに床との摩擦で動かない、とか、すべり台との摩擦でスムーズにすべらない、なんてことが思い浮かびませんか? 摩擦力は物体の動きを妨げる やっかいな力というイメージがあるかもしれませんね。 でも、もし摩擦力が無かったら? 人間は 歩くことができず、鉛筆で文字を書くこともできず、自転車や 自動車のタイヤは空回りして進まず、ブレーキだって使えなくなりますよ。 摩擦力は、やっかいものどころか、私たちの生活に欠かせない力なのですね。 当然、物理現象を考えるときにも必要不可欠な力です! 物理学では、『 摩擦力 』を3種類に分けて考えますよ。 物体を押しても静止しているときの摩擦力が『 静止摩擦力(せいしまさつりょく) 』 物体が動き出すときの摩擦力が『 最大摩擦力(さいだいまさつりょく) 』 物体が動いているときの摩擦力が『 動摩擦力(どうまさつりょく) 』 それから、摩擦力は力なので単位は [N] (ニュートン)ですね。 それでは、『 摩擦力 』について見ていきましょう! 力、トルク、慣性モーメント、仕事、出力の定義~制御工学の基礎あれこれ~. 摩擦力の基本 摩擦力の向き 水平な床の上に置かれた物体を押すことを考えてみましょうか。 はじめは弱い力で押しても、摩擦力が働くので動きませんね。 例えば、荷物を右向きに押すと、摩擦力は荷物が動かないように左向きに働くからです。 つまり、 摩擦力は物体が動く向きと反対向きに働く のですね。 図1 物体を押す力の向きと摩擦力の向き さあ、押す力をどんどん強くしていきましょう。 すると、どこかで物体がズルッと動き出しますね。 一度物体が動くと、動く直前に押していた力よりも小さい力で物体を動かせるようになりますね。 でも、動いているときにもずっと摩擦力が働いているんですよ。 図2 物体を押す様子と摩擦力 ところで、経験的に分かると思いますが、摩擦力の大きさは荷物の質量や床面のざらざら具合によって変わりますよね。 例えば、机の上に置かれた空のマグカップを押して横に移動させるのは楽にできます。 そのマグカップになみなみとお茶を注いだら? 重くなったマグカップを押して横に移動させるには、さっきよりも強い力が要りますね。 摩擦力が大きくなったようですよ。 通路にある重い荷物を力いっぱい押してもなかなか動きません。 でも、表面がつるつるしたシートの上にのせると、小さい力で押してもスーッと動きます。 摩擦力が小さくなったようですね。 摩擦力の大きさは、どういう条件で決まるのでしょうか?

位置エネルギー(ポテンシャルエネルギー) – Shinshu Univ., Physical Chemistry Lab., Adsorption Group

初歩の物理の問題では抵抗を無視することが多いですが,現実にはもちろん抵抗力は無視できない大きさで存在します.もしも空気の抵抗がなかったら上から落ちる物はどんどん加速するので,僕たちは雨の日には外を出歩けなくなってしまいます.雨に当たって死んじゃう. 空気や液体の抵抗力はいろいろと複雑なのですが,一番簡単なのは速度に比例した力を受けるものです.自転車なんかでも,速く漕ぐほど受ける風は大きくなり,速度を大きくするのが難しくなります.空気抵抗から受ける力の向きは,もちろん進行方向に逆向きです. 質量 のなにかが落下する運動を考えて,図のように座標軸をとり,運動方程式で記述してみましょう.そして運動方程式を解いて,抵抗を受ける場合の速度と位置の変化がどうなるかを調べてみます. 落ちる物体の質量を ,重力加速度を ,空気抵抗の比例係数を (カッパ)とします.物体に働く力は軸の正方向に重力 ,負方向に空気抵抗 だけですから,運動方程式は となります.加速度を速度の微分形の形で書くと というものになります.これは に関する1階微分方程式です. 積分して の形にしたいので変数を分離します.両辺を で割って ここで右辺を の係数で括ります. 両辺を で割ります. 両辺に を掛けます. これで変数が分離された形になりました.両辺を積分します. 積分公式 より 両辺の指数をとると( "指数をとる"について 参照) ここで を新たに任意定数 とおくと, となり,速度の式が分かりました.任意定数 は初期条件によって決まる値です.この速度の式,斜面を滑べる運動とはちょっと違います.時間 が の肩に付いているところが違います.しかも の肩はマイナスの係数です. のグラフは のようになるので,最終的に時間に関する項はゼロになり,速度は という一定値になることが分かります.この速度を終端速度といいます.雨粒がものすごく速いスピードにならないことが,運動方程式から理解できたことになります.よかったですね(誰に言ってんだろ). 速度の式が分かったので,つぎは位置について求めます.速度 を位置 の微分の形で書くと 関数 の1階微分方程式になります.これを解いて の形にしてやります.変数を分離して この両辺を積分します. という位置の式が求まりました.任意定数 も初期条件から決まります.速度の式でみたように,十分時間が経つと速度は一定になるので,位置の式も時間が経つと等速度運動で表されることになります.

例としてある点の周りを棒に繋がれて回っている質点について二通りの状況を考えよう. 両方とも質量, 運動量は同じだとする. ただ一つの違いは中心からの距離だけである. 一方は, 中心から遠いところを回っており, もう一方は中心に近いところを回っている. 前者は角運動量が大きく, 後者は小さい. 回転の半径が大きいというだけで回転の勢いが強いと言えるだろうか. 質点に直接さわって止めようとすれば, 中心に近いところを回っているものだろうと, 離れたところを回っているものだろうと労力は変わらないだろう. 運動量は同じであり, この場合, 速度さえも同じだからである. 勢いに違いはないように思える. それだけではない. 中心に近いところで回転する方が単位時間に移動する角度は大きい. 回転数が速いということだ. むしろ角運動量の小さい方が勢いがあるようにさえ見えるではないか. 角運動量の解釈を「回転の勢い」という言葉で表現すること自体が間違っているのかもしれない. 力のモーメント も角運動量 も元はと言えば, 力 や運動量 にそれぞれ回転半径 をかけただけのものであるので, 力 と運動量 の間にある関係式 と同様の関係式が成り立っている. つまり角運動量とは力のモーメントによる回転の効果を時間的に積算したものである, と言う以外には正しく表しようのないもので, 日常用語でぴったりくる言葉はないかも知れない. 回転半径の長いところにある物体をある運動量にまで加速するには, 短い半径にあるものを同じ運動量にするよりも, より大きなモーメント あるいはより長い時間が必要だということが表れている量である. もし上の式で力のモーメント が 0 だったとしたら・・・, つまり回転させようとする外力が存在しなければ, であり, は時間的に変化せず一定だということになる. これが「 角運動量保存則 」である. もちろんこれは, 回転半径 が固定されているという仮定をした場合の簡略化した考え方であるから, 質点がもっと自由に動く場合には当てはまらない. 実は質点が半径を変化させながら運動する場合であっても, が 0 ならば角運動量が保存することが言えるのだが, それはもう少し後の方で説明することにしよう. この後しばらくの話では回転半径 は固定しているものとして考えていても差し支えないし, その方が分かりやすいだろう.

Sitemap | xingcai138.com, 2024

[email protected]