2次関数の定義域が 0≦x≦a 2次関数の最大最小値の問題で、定義域が変数で与えられている場合があります。 y=x²−4x+5 においてxの定義域が 0≦x≦aのときの最大値を求めなさい。 このような問題です。 一緒に解きながら説明していきましょう。 グラフをかく まず、y=x²−4x+5のグラフを描いてみましょう。 y=x²−4x+5=(x−2)²+1 なので、グラフは次のようになります。 今回の問題で考えられるのは次の3パターンです。 ■ 1:a<4のとき a<4のとき、yがとる値は左側のグラフの実線部分になります。 このとき最大値はx=0のとき、y=5となります。 ■ a=4のとき a=4のとき、yの最大値はy=5(x=0、4のとき)となります。 ■ a>4のとき a>4のとき、yがとる値は右側のグラフの実線部分になります。 a>4のとき、yの最大値はy=a²−4a+5(x=aのとき)となります。 yの最大値が、xの定義域によって変化するということを覚えておきましょう。

  1. 二次関数 変域 求め方

二次関数 変域 求め方

【数学】中3-37 二次関数の変域 - YouTube

の三つです。 1. 頂点が定義域よりも左側にあるとき この場合は常に最小値が $x=3$ の点である $f(3)=-6a+3$ であることがわかりますね。よって $a+1<3 ⇔ a<2$ のとき、最小値は $-6a+3$ となります。 2. 頂点が定義域の中にあるとき この場合は最小値が常に頂点となることがわかります。よって $3≦a+1≦7 ⇔ 2≦a≦6$ のとき、最小値は $-a^2-2a-1$ となります。 3. 頂点が定義域よりも右側にあるとき この場合は常に最小値が $x-7$ の点である $f(7)=-14a+35$ であることがわかります。よって $a+1>7 ⇔ a>6$ のとき、最小値は $-14a+35$ となります。 さあ、これで全ての最大値と最小値のパターンが求まったので、いよいよ答える準備ができました。よって!答えは! 最大値は$\begin{eqnarray}\left\{\begin{array}{1}-14a+35 (a<4)\\-6a+3 (a≧4)\end{array}\right. \end{eqnarray}$ 最小値は$\begin{eqnarray}\left\{\begin{array}{1}-6a+3 (a<2)\\-a^2-2a-1 (2≦a≦6)\\-14a+35 (a>6)\end{array}\right. \end{eqnarray}$ となります!お疲れさまでした。 定義域が動くパターン しかし!まだまだあります!今度はなんと、 定義域が動くパターン!! なんだか私もテンションが上がって参りました! ただし! 二次関数 変域 グラフ. !定義域が動くといっても、なんら難しいことはありません。 さきほどグラフを頭の中で動かしてイメージしたように、今度は定義域を頭の中で動かせばいいのです。どっちが動いているかが違うだけであって、やることは全く一緒です。 次の二次関数の $a-1≦x≦a+1$ における最大値と最小値を求めよ。 $y=x^2-4x+6$ 二次関数の方はもう決定されていますから、なんとグラフが書けるんですね!これは親切!さっそく平方完成しましょう!! $y=(x-2)^2+2$ そして間髪入れずにグラフを書く!

Sitemap | xingcai138.com, 2024

[email protected]