✨ ベストアンサー ✨ 4の倍数なので普通は4で割ったあまりで場合わけすることを考えますが、今回の場合は代入するものがnに関して2次以上であることがわかります。 このことからnを2で割った余り(nの偶奇)で分類してもn^2から4が出てきて、4の倍数として議論できることが見通せるからです。 なるほど! では、n^4ではなく、n^3 n^2の場合ではダメなのでしょうか? n=2n, 2n+1を代入しても4で括れますよね? n^2以上であれば大丈夫ということですか! 算数・数学科教育 注目記事ランキング - 教育ブログ. nが二次以上であれば大丈夫ですよ。 n^2+nなどのときは、n=2k, 2k+1を代入しても4で括ることは出来ないので、kの偶奇で再度場合分けすることになり二度手間です。 えぇそんな場合も考えられるのですね(−_−;) その場合は4で割った余りで分類しますか? そうですね。 代入したときに括れそうな数で場合わけします。 ありがとうございました😊 この回答にコメントする

算数・数学科教育 注目記事ランキング - 教育ブログ

(1)余りによる分類を考えます。 すべての整数は3k, 3k+1, 3k+2で表せますね♪ 合同式を知ってるならそれでも。 (2) (1)を利用しようと考えます。 すると、x^2を3で割った余りが0, 1とわかります。 後は, 7^(2n)の余りが1である事に気づけば、 y^2+10z^2の余りが0か1であると絞れるますね。 別解として対偶を取ると早いです (3) (2)からy, zのいずれかは3である事に気づきます。次に、xが平方数であり、7も平方数である事に気づけば、y^2+10z^2=p^2となるpが存在すればいいです。 整数問題では、積の形にするのも基本でした。 そこで10z^2=(p-y)(p+y) の形にします。 あとは偶数、奇数に着目してみて下さい。 y, zの値が決まってしまいます。 多分答えはx=7^(n+1)です。

【高校数学A】剰余類と連続整数の積による倍数の証明 | 受験の月

(1)まずは公式の確認 → 整数公式 (2)理解すべきこと(リンク先に解説動画があります) ①素数の扱い方 ②なぜ互除法で最大公約数が求められるのか ③ n進法の原理 ④桁数の問題 ⑤余りの周期性 ⑥整数×整数=整数 (3)典型パターン演習 ※リンク先に、例題・例題の答案・解法のポイント・必要な知識・理解すべきコアがまとめてあります。 ①有理数・自然数となる条件 ② 約数の個数と総和 ③ 素数の性質 ④最大公約数と最小公倍数を求める(素因数分解の利用) ⑤最大公約数と最小公倍数の条件から自然数を求める ⑥互いに素であることの証明 ⑦素因数の個数、末尾に0が何個連続するか ⑧余りによる分類 ⑨連続する整数の積の利用 ⑩ユークリッドの互除法 ⑪ 1次不定方程式 ⑫1次不定方程式の応用 ⑬(整数)×(整数)=(整数)の形を作る ⑭ 有限小数となる条件 ⑮ 10進数をn進数へ、n進数を10進数へ ⑯ n進法の小数を10進数へ、10進法の小数をn進数へ ⑰n進数の四則計算 ⑱n進数の各位の数を求める ⑲n進数の桁数 (4)解法パターンチェック → 整数の解法パターン ※この解法パターンがピンとこない方は問題演習が足りていません。(3)典型パターン演習が身に着くまで、繰り返し取り組んでください。

入試標準レベル 入試演習 整数 素数$p$, $q$を用いて$p^q+q^p$と表される素数を全て求めよ。 (京都大学) 数値代入による実験 まずは色々な素数$p$, $q$を選んで実験してみてください。 先生、一つ見つけましたよ!$p=2$, $q=3$として、17が作れます! そうですね。17は作れますね。他には見つかりますか? … …5分後 カリカリ…カリカリ……うーん、見つからないですね。どれも素数にはならないです…もうこの1つしかないんじゃないですか? 結果を先に言うと、この一つしか存在しないんです。しかし、問題文の「すべて求めよ」の言葉の中には、「 他には存在しない 」ことが分かるように解答せよという意味も含まれています。 そういうものですか… 例えば、「$x^3-8=0$をみたす実数をすべて求めよ。」という問題に、「2を代入すると成立するから、$x=2$」と解答してよいと思いますか? あっ、それはヤバいですね…! 結論としては$x=2$が唯一の実数解ですが、他の二つが虚数解であることが重要なんですよね。 この問題は 「条件をみたす$p$, $q$の組は2と3に限る」ことを示す のが最も重要なポイントです。 「すべて求めよ」とか言っておきながら1つしかないなんて、意地悪な問題ですね! 整数問題の必須手法「剰余で分類する」 整数問題を考えるとき、「余りによって分類する」ことが多くあります。そのうち最も簡単なものが、2で割った余りで分類する、つまり「偶奇で分類する」ものです。 この問題も偶数、奇数に注目してみたらいいですか? $p$と$q$の偶奇の組み合わせのうち、あり得ないものはなんですか? えっと、偶数と偶数はおかしいですね。偶数+偶数で、出来上がるのは偶数になってしまうので、素数になりません。 そう、素数のなかで偶数であるものは2しかないですからね。他にもありえない組み合わせはありますか? 奇数と奇数もおかしいです。奇数の奇数乗は奇数なので、奇数+奇数で、出来上がるのは偶数になって素数になりません。 そうなると偶数と奇数の組み合わせしかありえないとなりますが… あ!偶数である素数は2だけなので、片方は2で決定ですね! そのとおり。$p$と$q$どちらが2でも問題に影響はありませんから、ここでは$p=2$として、$q$をそれ以外の素数としましょう。 $q$について実験 $q$にいろいろな素数を入れてみましょう。 $q=3$のときには$2^3+3^2=17$となって素数になりますが… $q=5$のとき $2^5+5^2=32+25=57$ 57=3×19より素数ではない。 $q=7$のとき $2^7+7^2=128+49=177$ 177=3×59より素数ではない。 $q=11$のとき $2^{11}+11^2=2048+121=2169$ 2169=9×241より素数ではない。 さっきも試してもらったと思いますが、なかなか素数にならないですね。ところで素数かどうかの判定にはどんな方法を使っていますか?

Sitemap | xingcai138.com, 2024

[email protected]