肝炎が長く続くと、肝細胞の破壊と再生が繰り返され、肝臓に線維組織がたまってきます。これを肝臓の線維化といい、線維化が進行した状態が肝硬変です。肝硬変になった肝臓は硬く、表面がでこぼこした不整な状態になります。肝細胞が線維組織に置き換わり、肝臓の基本単位である肝細胞の数が少なくなるため、肝機能の低下がみられます。血液検査では、肝臓が作るタンパク質であるアルブミンが低下したり、血小板数の減少が見られたりします。肝硬変ではさまざまな症状が見られ、特に肝臓の働きを十分に保てなくなった非代償性肝硬変でははなはだしいです。食道静脈瘤を初めとするいろいろな合併症を伴いやすくなります。 肝がんとは?
  1. 肝臓はどのような構造になっているの? | 看護roo![カンゴルー]
  2. モンティ・ホール問題とその解説 | 高校数学の美しい物語
  3. 条件付き確率
  4. 条件付き確率の解説(モンティ・ホール問題ほか) | カジノおたくCAZY(カジー)のブログ

肝臓はどのような構造になっているの? | 看護Roo![カンゴルー]

Notice ログインしてください。

B型肝炎ワクチンは感染の予防に有効である A型肝炎とB型肝炎はワクチンで予防することができます B型肝炎の抗原・抗体については後日別の記事で しっかり解説をしていきたいと思います! 3. C型肝炎のキャリアはHCV抗原が陽性である この選択肢は国試後に正しいのではないかと指摘がありましたが 結局正解とは認められなかったようです C型肝炎の抗原検査では5%ほどが偽陰性になる可能性があるためでしょうか C型肝炎の抗体、抗原についてもまた別の記事で詳しく解説します 4. 慢性肝炎の原因ウイルスで最も多いのはA型である 慢性肝炎が最も多いのはC型です 5. 肝臓について正しいのはどれか。2つ選べ. 慢性肝炎においては急性憎悪期を過ぎても運動制限を行う 慢性肝炎の状態では、時に症状が急性化することがあります これを急性憎悪期といいますが、 また症状が沈静化すれば、運動制限をする必要はありません B型肝炎と比べたC型肝炎の特徴について正しいのはどれか。 【Ns国試より】 劇症化しやすい。 性行為による感染が多い。 無症状のまま慢性化しやすい。 ワクチン接種による感染予防対策がある。 1. 劇症化しやすい。 劇症化とは急性よりもさらに急激に肝不全状態となることです B型では劇症化が見られることもあります C型ではほとんどが慢性状態への移行ですのでこれは間違い 2. 性行為による感染が多い。 性行為による感染はB型が多く C型ではあまりないとされています 3. 無症状のまま慢性化しやすい。 C型肝炎と言えば慢性化 肝硬変や肝癌の原因ともなります 4.ワクチン接種による感染予防対策がある。 C型肝炎はワクチンの予防対策がありません B型ではワクチンがあります まとめ(表) 肝炎が進行すると、黄疸という状態になります 黄疸は体内のビリルビンが過剰な状態です ビリルビンについての勉強はこちらから↓

勝率が変わるなら、どのように変わるのか? こういうときの鉄則は 「極端な例を考える」 ということだ。 たとえばドアの数を10000個あったとする。そのなかでアタリはやっぱり1つ。そしてモンティはアタリと挑戦者が選んだドアを残してぜんぶ開けます(9998個のドアを開ける)。 そしたらどうだろう? 勝率は本当に1/2だろうか?

モンティ・ホール問題とその解説 | 高校数学の美しい物語

最近、理系になじみのないひとが周りに増えてきてた。かれらは「数学なんかできなくても生きていけるし!」的なことをよくいうのだが、まぁそうなのかもしれないとおもいつつも、やっぱりずっと数式をいじってきた人間としてはさみしいものをかんじる。 こうしたことは数学だけに限らない。 学問全般で「この知識が生活の○○に役立つ」とか、そういう発想はやめた方がいい というのがぼくの持論だ。学問がなんの役に立つのか?という大きな問題について思うところはないわけではないのだけれど、それに関してのコメントは今回は控えたい。とにかく <なにかに役立てるために> 学問をする、というのはやっぱりなんか気持ちが悪い。もちろん、実学的な研究ではそうなのだろうけど、目的に合わせて学問を間引くみたいな発想を、ぼくはどうも貧困さをかんじてしまう。 役に立つとか立たないとかとどれだけ関係があるのかはわからないけれど、とにかく「学問と感覚」の話題はしておいた方がいいと思った。 そこで今回は数学の話をしてみることにした。モンティ・ホール問題という有名な問題を題材に、数学の感覚についての話をする。 「モンティ・ホール問題」とは? そもそもこの名前を聞いたことがないというひとももちろんいるだろう。元ネタはアメリカのテレビ番組かなにからしいのだが、以下のような問題としてモンティ・ホールは知られている。 「プレイヤー(回答者)の前に閉じられた3つのドアが用意され、そのうちの1つの後ろには景品が置かれ、2つの後ろには、外れを意味するヤギがいる。プレイヤーは景品のドアを当てると景品をもらえる。最初に、プレイヤーは1つのドアを選択するがドアは開けない。次に、当たり外れを事前に知っているモンティ(司会者)が残りのドアのうち1つの外れのドアをプレイヤーに教える(ドアを開け、外れを見せる)。ここでプレイヤーは、ドアの選択を、残っている開けられていないドアに変更しても良いとモンティから告げられる。プレイヤーはドアの選択を変更すべきだろうか?」 引用元: モンティ・ホール問題 - Wikipedia この問題は「残った2つのうちのどっちかがアタリなんだから、確率はドアを変えようが変えまいが1/2なんじゃないの? ?」というふうに直感的に思えてしまうのだが、答えは1/2にはなってくれない。 極端な例を考える 確率の問題の一番愚直な解法は樹形図を書くことだが、そんな七面倒くさいことをするつもりはない。サクッとザックリ解いていきたい。 そもそも、モンティがいらんことをしなければ勝率は1/3だ。この問題の気持ち悪いところは、 モンティがちょっかいをかけることで勝率が変わる ことだ。テキトーに選んで勝率1/3だったものが、モンティがドアを開けることでなぜ1/2になるのか?

条件付き確率

関連記事: 『あなたなら、どれに賭ける? (モンティ・ホール問題ほか)』

条件付き確率の解説(モンティ・ホール問題ほか) | カジノおたくCazy(カジー)のブログ

背景 この問題は, モンティ・ホールという人物が司会を務めるアメリカのテレビ番組「Let's make a deal」の中で行われたゲームに関する論争に由来をもち, 「モンティ・ホール問題」 (Monty Hall problem)として有名である. (1) について, 一般に, 全事象が互いに排反な事象 $A_1, $ $\cdots, $ $A_n$ に分けられるとき, 「全確率の定理」 (theorem of total probability) P(E) &= P(A_1\cap E)+\cdots +P(A_n\cap E) \\ &= P(A_1)P_{A_1}(E)+\cdots +P(A_n)P_{A_n}(E) が成り立つ. モンティ・ホール問題とその解説 | 高校数学の美しい物語. (2) の $P_E(A)$ は, $E$ という結果の起こった原因が $A$ である確率を表している. このような条件付き確率を 「原因の確率」 (probability of cause)と呼ぶ. (2) では, (1) で求めた $P(A\cap E) = P(A)P_A(E)$ の値を使って, 条件付き確率 $P_E(A) = \dfrac{P(A\cap E)}{P(E)}$ を計算した. つまり, \[ P_E(A) = \dfrac{P(A)P_A(E)}{P(E)}\] これは, 「ベイズの定理」 (Bayes' theorem)として知られている.

こんにちは、ウチダショウマです。 いつもお読みいただきましてありがとうございます。 さて、確率論で最も有名と言っても過言ではない問題。 それが「 モンティ・ホール問題 」です。 【モンティ・ホール問題】 $3$ つのドアがあり、$1$ つは当たり、$2$ つはハズレである。 ⅰ) プレーヤーは $1$ つドアを選ぶ。 ⅱ) 司会者(モンティさん)は答えを知っていて、残り $2$ つのドアのうちハズレのドアを開ける。 ここで、プレーヤーは最初に選んだドアから残っているまだ開けられていないドアに変えることができる。 プレーヤーがドアを変えたとき、それが当たりである確率を求めなさい。 ※ヤギがハズレです。当たりは「スポーツカー」となってます。 少々ややこしい設定ですね。 皆さんはこの問題の答え、いくつだと思いますか? ↓↓↓(正解発表) 正解は $\displaystyle \frac{1}{2}$、…ではなく $\displaystyle \frac{2}{3}$ になります! 条件付き確率. 数学太郎 え!だって $2$ 個のドアのうち $1$ 個が当たりなんだから、正解は $\displaystyle \frac{1}{2}$ でしょ?なんでー??? そう疑問に思った方はメチャクチャ多いと思います。 よって本記事では、当時の数学者たちをも黙らせた、モンティ・ホール問題の正しくわかりやすい解説 $3$ 選を 東北大学理学部数学科卒業 実用数学技能検定1級保持 高校教員→塾の教室長の経験あり の僕がわかりやすく解説します。 目次 モンティ・ホール問題のわかりやすい解説3選とは モンティ・ホール問題を理解するためには、 もしもドアが $10$ 個だったら…【 $≒$ 極端な例】 最初に選んだドアに注目! 条件付き確率で表を埋めよう。 以上 $3$ つの考え方を学ぶのが良いでしょう。 ウチダ 直感的にわかりやすいものから、数学的に厳密なものまで押さえておくことは、理解の促進にとても役に立ちますよ♪ ではさっそく、上から順に参りましょう! もしもドアが10個だったら…【極端な例】 【モンティ・ホール問題 改】 $10$ 個のドアがあり、$1$ つは当たり、残り $9$ 個はハズレである。 ⅰ) プレーヤーは $1$ つドアを選ぶ。 ⅱ) 司会者(モンティさん)は答えを知っていて、残り $9$ つのドアのうちハズレのドア $8$ つを開ける。 ここで、プレーヤーは最初に選んだドアから残っているまだ開けられていないドアに変えることができる。プレーヤーはドアを変えるべきか?変えないべきか?

ざっくり言うと 新たな証拠が出てきたら、比例するように最初の確率を見直さなければいけない ギャンブルシーンにおいては、極めて重要な考え方 モンティ・ホールの問題、3枚のコインの例題で解説 数日前に書いた 『あなたなら、どれに賭ける? (モンティ・ホール問題ほか)』 を読んだ方から、解説がないのでよくわからないとお叱りの言葉をいただいたので、きちんと解説を書きました。 わかりやすいので、最初にコインの問題から説明します。 ◆コインの問題 <問い> 1枚は表も裏も黒、1枚は表も裏も白、1枚は表が黒で裏が白の3枚のコインから、1枚のコインを取りだし裏面を伏せてテーブルに置いたところ表は黒でした。では、そのコインの裏面が黒である確率は?

Sitemap | xingcai138.com, 2024

[email protected]